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Inorganic Materials Research Division,
Lawrence Berkeley Laboratory
ABSTRACT
This paper discusses characteristics of the thermally activated
‘glide of a dislocation, idealized as a line of constant tension, through
a random array of identical, immobile point obstacles under constant
applied stress. Two characteristics of the motion are emphasized.
First, the glide is jerky. The degree of this "jerkiness" is principally
determined by temperature. Second, the velocity of glide at low to

moderate temperature can be fit to an equation of the Arrhenius type only

if a pre-exponential function of temperatiure and stress is incorporated.
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‘1. INTRODUCTION

The mechanical behavior of a'crystalline solid is often influenced

' by dislocation motion through a field of obstacles, for example, forest

dislécations, solute atoms, or small precipitates, which are dispersed
more or less in a random fashion through thé struéture. The problem of
predicting the rate of this dislocation motion is formidable. We have
been engaged in‘a study of one of the simplest problems of this type:
the thermallyvactivated glide of a dislocation, idealized as a line of
constant tension, through a random array of identical, immobile point
Obstacles under constant applied stress. The study relies on computer
simulation and statiétiéal analysis. The computér code and initial re-
sults are aiscussed elsewherel’g. In the present paper we emphasize
two results of this study which may have important physical meaning.

First, the motion of a dislocation thfough a finite random array of
point obstacles is usually jerky. A few éositions'within the array
efficiently pin the disiocation for times long compéred to the transit
times between these "strong" configurations. Consequently, the disloca-
tion appears to jump almost discontinuously from one of these configura-
tions to anofher. The degree of this "jerkiness" is principally determined
by the temperature. The "jerkiness" also tends to increase with applied
stress, but stress is the dominant variable oﬁly when the temperature is
very high, the obstacie strength is very low, or the stress is very close
to the zeré—degreevyield stress of the arrﬁy.

Second, ‘the dependence of dislocation velocity on temperature at low
to moderate temperatures can be fit to an equation of the Arrhenius.type

only if a pre-exponential function of temperature and stress is incorpor-



ated. This pre—expohential.function hes nothing to do with the "entropy
of.activation", which is assumed zero; it is rather associated with dis-
location activation across barriers having a distribution of effective
strengths. The pre-exponential function approaches  a constant as temper-
ature appreaches zero.

Before documenting these results we briefly review the governing
equations of this problem:and the nature of our eompgter.code.

2. COMPUTER PROGRAM AND PERTINENT EQUATIONS

The computer érogram generates a large number_Ofvrandomly distri-
buted point barriers in a square erea representing the slip plane. 1In
general we used 999 point arrays but 500 point arrays were used to check
results.. Barriers on either side of this square area are considered to
be in mirror image positions with respect to the side boundaries. This
boundary.condition physically approximates a free surface or grain
boundary; |

- An initially straight dislocation of constant iine energy is intro-
duced at the bottom of the array. A shear stress, 1, is applied po the
.dislocation in the direction of the Burgers vector. The dislocation
moves forward bowing befween obstacles to an equilibrium radius of curva-

ture, R¥, given in dimensionless form by

R#* = R/Ls' = r/rst = 1/271% [1]
where
L = /A [2]
S P
'and

¥ =
T Tst/QT [3]
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Iﬁ this equaﬁion Ap is the mean area per obstacle, T is the iine tension,
b is the Burgeré vector, and t is the appliéd‘streés.

'If the.dimenéionlesé applied stress t¥ iS'iess than the zero degree
yield stress, T*y, th¢ dislocation will be stopped soﬁewhere in the array.
In our computer code fhe stable configuratiqns are found using a circle
rolling algorithm. The dislocation line wili be érrested by an obstacle
if the fqrce on the obstacle is less than the obstacle strength. The
force on obstacle i is.given by 2T cos (wi/2). The obstacle strength is
2T cos (wc/2). Hence the condition for obstaclé i to sto§ the dislocation
is | |

or cos (y,/2) €I cos (v /2) | (4]
or

v.> v

i c
This condition is illustrated in Fig. 1. When the condition [L] is
obeyed for all obstacles on the dislocation line the line will be arrested,
giving a.mechanically stable position. If no mechanically stable positions
can be found, the stress is equal to or higher than r*y. Foreman and
Makin3 determined T*y values as a. function of wc'using'a similar computer
experiment.

At a finite temperature a dislocation can mo;e by thermally activa-
ting past barrier obstacles. This facility is included in our numerical
code. In its most general form2 the codevcémputes the-stochastic
pfobability for activation past each of the Obstacles_against which the
dislocation is pressed énd forms an appfopriate’product of these to obtain

the stochastic probability of activation past the line configuration of
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obstacles. The code then calls two random numberé. The first is uséd
to determine the time required for the dislocationbto.activate; The
second’is used to identify‘the particﬁigr obstacle which is cﬁta The
' code cuts this obstacle and searches the array unﬁil a new stable con-
figuratidn of ‘obstacles is found. In thisvcode.the activation trials -
are independent events; the dislocation does ﬁot remémber past failures.
The sequence of stable dislocation configurations taken onlis,.however,
Markovian; the probability that a dislocation will be found in a cer-
tain configurgtion is a function oflfhé previous. configuration only.
The Véiocify is computed as the reciprocal of the time (t) necessary

for the dislocation to sweep through the array. In dimensipnless form:

I - B )
where v¥* isfthe dimenéioﬁless velocity, v 'is fhe attempt frequency
1(assumed constant), and L is the edge length of the square array.

Using the statistics .of the activation process and approximations
.idengified in the course of fhis‘workl’ 2 we have dévised simpiifica—
tions of the general code which allow ra@id appré#imate treatment of
dislocation behavior Qvér a rénge of conditions. A particularly useful
prqcedure, valid at low temperature, is the "minimum angle" approxima-
tion. As temperature is lowered‘it becomes incfeasingly likely that
thé'disloca£ion will cut a line of barrier obstacles éf the weakest
point, that is, that it will activate past the particular obstacle at
which the angle ¢ takes on its minimum value. Since the expected
Valué of tﬁe time, <t>!to transit the array is just the sum of the ex-

‘pected times, <ti>’ to activate past each of the stable configurations
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in the array, we obtain a good low-temperature approximation with a code
which activatés the dislocation past each configuration by breaking the
"minimum angle" in the eXpected timé <t

This approximation greatly'Simélifies ﬁhe‘numeriéal analysis. The
sequence of obstacle ccnfigurations_encountered as a dislocation movés
through an arfay in the "minimum angle" mode is a functién of the
applied stress only. The stability.of a given'liﬁe'depends on the stréss
and on the obsfacle stréngth, but is indepeﬁdent of temperatﬁre. Tempera-
ture entefs the problem only in the computatiohvbf expected activation
times. | |

In order to determine the expected activation time_<ti>, for a line
having minimum angle wmin’ we must compute the activation energy Gmin’
To‘do-this we assume an obstacle-dislocation interaction function, F(x).
Fig. éa shows a general di31ocation¥obstacle interattion; Assuming that
F incrga;es monotonically té Emax"thé activation eéergy;Gmin, is given
o v .

Gyt - 2Fd[F(Bc) - F(si)] | [6]
whete 4 is thé characteristic width»of the obstacle_,-ﬁi = cos wmin/z and
Bc = cos wé/?. For our initial studies we selécted a simplé recténgular
dislocation—obstacle,interactionbshown in Fig. 2b. In this special case
equafion [6] réduées to

Gy, = 2ra(8, - 8y) [7]

The average waiting time for a dislocation is then given by
o oo _ : : (8
» ti>’ exp a(Bc Bi) o - (8]

with
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The parameter a is a dimensionléss reciprocal temperéture. It has a' _
physically.reélistic mihimumvof 10, It lies in the range 102 - th _J
for typical metals at room temperature, and increases without- bound as
temperature.épproaches zZero.
3. CHARACTERISTICS OF DISLOCATION MOTION

The points we wish to emphasize in this paper gre'most easily dis-
cussed in the "minimum angie" approximatioﬁ; which we have found2 to be
gualitatively acéurate and.numerically reasonable for o 2 100. As the
dislocation moves fhrough the array,.in this approximation, it enéounters
a sequence of lines uniquely determined by the appliéd'stress, Each of
these lines has a "étrength" B, whicﬁ is also uﬁiqpely determined by the
stress. A typical normalized distribution.of Bi,§alués is shown‘in Fig. 3;

this is a composite distribution found by compiling the strengths of all

lines encountered in passage through twenty 999 point arrays at two stresses:

T*

0.1 and t* = 0.3.7 Given an obstacle strength, Bc’ all lines having

A

B.

i BC will arrest the dislocation and must be passed thermaily; lines

having Bi > Bé will be mechanically cut. The yield strength of the array
at obstacle strength Bc is that stress just sufficient to cause all lines

B ; at r*y, Bc = Bo, where Bo is the strength of the strongest

to have B.
i c

line encountered. The expected waiting time <ti> at a line of strength
61 < 8c is given by equaticn [9]. The expected time to transit a given

array is the sum of ?ti> over all stable lines encountered.



(a) Jerky glide
Except under conditions of very low a or veryvlow Bc the motion of
a dislocation through a random array of obstacles is Jerky. A plot of

the area swept out versus time is stepﬁed; reflecting a tendéncy of the

dislocation to glide quickly (relative to the total transit time) from

one strong configuration to another. The phenomenon is illustrated in

Figs. 4 and 5. Fig. 4 (a-d) shows the effect of temperature at constant

stress. The Jjerkiness of the motion increases strikingly and monotonically

‘as o is raised. Fig. 5 (a-d) shows the effect of stress at constant

temperature. The motion tends to be more jerky at high stress; but the

effect is less pfonounced. In fact, increasing the stress from,r*/;*..=~

, : _ y
0.4 to T*/T* = 0.6 resulted in a slightly smoother glide through

y,
this particular array.

. The reason for "thermal jerkiness" is straghtforward. Compare the
relative waiting times of two lines of differing strength, say Bl < 82.
By equation [8] _

11 [10]

The ratio of expected activation times increases exponentially with aj

A<tl>Z§t2> = exp a [82_— B

given thaf the dislocation encounters obstacle configurations having a
distribution of 8 values the flow necessarily becomes more Jerky as a
is raised. As temperature approaches zero a increases without bound, and

an area-time profile approaches a simple step shape with the dislocation

-spending virtually its whole transit time in the strongest configuration

(BO). Since the difference By - Beicannot exceed B, "thermal jerkiness"

is less noticeable when the obstacle strength is very small.-
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The source of the "mechanical Jerkiness" illustrated in Fig. 5 is
more subtle. . Raising the applied stress (t¥) affects the dislocation
motion in two ways. First, as mgy be seen in Fig. 3, the distributioh
of line Strengths is changed. The value.(so) éf fhe strength of the
strongest line encountered is raised by an amoﬁnt which, for t* < 0.5,

is given approximately byAthe Friedel relation,g_h:

'so « (23, v [11]

At the same time the shape of the distribuﬁion is changéd. The distri-
butipn is broadened toaspread over a larger range of B values. There
tend to be fewer lines having B8 near BO at highef.streésﬁ The second-
effect isva change in the fraction of unstable lines. This fraction
increases with the stress. More lines are mechanically cut ét higher
stress; fewer must be passed thermally. |

We may easily show that the first rather than the second of these
effects is principally responsible for "mechanical Jjerkiness". The
velocity of the dislocation is largely determined by those lines whose
expected.waiting times are within an order of magnitude of the expected
time to acti&ate past the strongest line in the array. By equation [8],
such lines have Bi values

B, < B +2:3 \ [12]

The mechanical cutting'of lines will have an important effect on
velocity iny if lines of this stréngth can be cut, i.e.,‘if BC satis-
fies the inequality [12]. Using the Friedel relation [11] we obtain the
condition -

2.3

Ba

[13]

Q

1l- (BO/BC) =1 - (T*/T*y)2/3 <
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for mechanical cutting to have an important effect on the “jerkiness" of

the motion. The inequality [13] will be saﬁisfied only if the applied

~stress is high (1¥* near T*y) or if a or Bc is small. When a = 100 and

(T*/k* ) = 0.8 mechanical cutting can be neglected if Bc> %-or wc'<16lo.
’ y . .

On the othef hand, the tendency 6f the stress to broaden the distri;
bution of line stfengths has the conseéuence that the numbef of lines
which satisfy the inequaiity,[lQ] tends to decrease as the stress is
raised, hence increasing the "jerkiness" of the flow. However, while
the effect of increasing temperature is mathematically certain, the

effect of increasing the applied stress is only statistically likkly;

-one will occasionally find that raising the stress causes smobther dis-

location glide through s particular array, as illustrated in the exam-

ple of Fig. 5.

(b) The'velocity—temperéture relation

Fig. 6 shows thevrelation between dislocation velocity and dimen-
sionless reciproéal temperature for several values of the applied
stress for a given 999 point array of fixed obstacle strength. The
daté were computed ﬁith our code operating in thé "minimum angle" mode.
The cur?es giving (- 1nv¥) as a function of a bend upward; they may

be fit by equations of the Arrhenius form only if pre-exponential func-

_tions of o are incorporated. The concavity of these curves is again due

to the fact that the dislocation encounters lines having a distribution

of strengths as it moves through the array.
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The velocity v¥* is proportional to the inverse éf fhe time spent in .
traversing the array (equation [5]). If.n + 1 stable obstacle configu-
rations are‘encountered, numbered O,...., A in orde?_of inéreasing |
strength, gnd if each is assumed to be fhermally passed in its expected
time, then | |

-1

| i o |
v* = Cigo<ti>) leosTt et 2T [14]

.where C is a constant,

s
Si= 1MLy

z <t >/<to>. o [15]
and <to> is the activation tiﬁe for the strongest line in ﬁhe-array.
Using equation [8],
| -lnv* = 1nS + o [B, - B,] + 1nC, [16]
which is of the Arrhenius form ﬁith pre-exponential function S. From
equation [11] S is seen to be a function of o and t*, It approaches 1

as o becomes very large (T approaches zero). Equations [11] end [12]

show that S is a monotonically decreasing function of o, hence the con-

cavity of the curves in Fig. 6.
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"FIGURE CAPTIONS
Configuration of a dislocation pressed against an array of
obstacles by a stress T.

Poséible,force displacement felaiiohs for diSlqcation'obstaciev

interaction in the limit of small obstacle size. The relation

illustrated in (b) was used in the computations reported here. -

Distribution of line strengths:encounﬁered'in dislocation
passage»through 20 distinct 999 point arrays &t two stresses:
(a) t* = 0.1, (b) T* = 0.3.

The effebt'of temperature on the jerkiness of dislocation glide.
The area swept out by the dislocation is plotted against dimen-
sionless time.(t* = #t) at four values of dimensionless recipro-

¢al temperature o. In these runs T* = 0.4,8 =q0.63.

The effect of stree on the jerkiness of .glide. The area swept
out by the dislocation is plottéd'againsf_dimensionless time at

~ four vglues of the pérameter r*/r*y."In these runs o = 100;

C

B = 0.63.

Théleffect'of'temperature on veloeity. - Note the upwﬁrd'concavity

of the curves..
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